
SCud

Report
of the

Defense Science Board
Task Force on

MILITARY
SOFTWARE

SEPTEMBER 1987

00
00

DTIC
.S ELEC T E

Office of the Under Secretary of Defense for Acquisition

Washington, D.C. 20301

Dh~r'a TI.)N S7ATEME2Tifl

Al:iev~ I- % ") 'c rslec ; .

• . .,, ,, . , - .• i . ..- . . . , i, .,t..e . •.. .• "% , "• , ,, .. , . " •* , d • * •

Unclassified
SECURITY CLASSIFICATION OF THI1SFA-GT ________________

Form Approved
REPORT DOCUMENTATION PAGE OMB No 0704o.0188Emp. Date.• Jun 30, 1986

la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS
Unclassified N/A
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTIONNIAVAILABILITY OF REPORT
N/A Distribution Statement A: Approved for
2b. DECLASSIFICATION/DOWNGitADING SCHEDULE Public Release: Distribution is Unlimited.
N/A
4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S%

N/A N/A

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
* Defense Science Board, Ofc of (if applicable)

the Under Secy of Def (A) DSB/OUSD (A) N/A
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

The Pentagon, Roon 3D1020
Washington, D.C. 20301-3140 N/A

n. NAME OF FUNDING/ SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATiON (If appiariable)

Defense Science Board/CUSD(A) DSB/OUSD(A) N/A
Bc. ADDRESS (City, State, and ZIP Coe) 10. SOURCE OF FUNDING NUMBERS

The Pentagon, RoAn 3D1020 PROGRAM PROJECT TASK WORK UNIT

Washington, D.C. 20301-3140 ELEMENT NO. NO. NO. ACCESSION NO.

N/A I N/A N/A N/A
11. TITLE (Include Security Classification)
Peport of the Defense Science Board Task Force on Military Software, Unclassified.

12. PERSONAL AUTHOR(S)
N/A
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT
Final I FROM N/A TO. 1987 September 82
16. SUPPLEMENTARY NOTATION

N/A
17. COSATI CODES 18. SUBJECT TERM$ (Continue on reverse i necessary and identify by block number)

FIELD GROUP SUB-GROUP •

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

"20. DISTRIBU'rON/AVAILABILITY OF ABSTRACT 21. A3STRACT SECURITY CLASSIFICATION
E UNCLASSIFIED/UNLIMITED 0 SAME AS RPT. 0 DTiC USERS

22a. NAME OF RESPONSIBLE INDIVIDUAL |22b TELEPHOCNE (include Area C(,ýde) 22c- OFFICE SYMBOL
Diane L.H. Evans . (202) 695-4158/6463 I DSB/OUSD(A)

DD FORM 1473,84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete. - Unclassitied

OFFiCE OF THE fECRETARY OF DEFENSE
WAHINGTON, D.C. 20301 -40

DEPNSE WCIENCE
00AMN October 7, 1987

MEMOHANDUM FOR UNDER SECRETARY OF DEFENSE FOR ACQUISITION

SUBJECTt Report of the Defense Science Board Task Force on
Military Software

I am pleased to forward the final report of the Defense
Sclonce Board Task Force on software. This Task Fo'ce, chaired
by Dr. Frederick Brooks, addressed the managerial and technical
changes needed to improve the software acquisition process
within the DoD.

Although the report has been delayed and the technical
assessment of the STARS program is dated, the report is still a
valuable document and should be widely distributed. The
report's recommendations call for hard management thinking on
how to accomplish the iterative setting of requirements within
the existing acquisition structure. Thp report also concludes
that software productivity improvements will be achieved mainly
through management init.atives within the contracting process as
opposed to technical "magic."

The Task Force's assessments on the Ada language initiative
and the Software Engineerine Institute are also valuable. I
recommend that the report be distributed to the offices within
OSD, OJCS, the Service staffs that deal with software technology
and acquisition, and to the appropriate Defense related
industries and organizations.

Charles A. Fowler
Chairman

~ Attachment

OFFICE OF THE SECRETARY OF DEFENSE
WASHINGTON, D. 10301 -3140

DEFE. SCIENCE
BOARD July 1, 1987

MEMORANrUM FOR CHAIRMAN, DEFENSE SCIENCE BOARD

SUBJECT: Report of the Defense Science Board Task Force on
Military Software

I enclose the final report of the Defense Science Board Task
Force on Military Software. Our major findings and
recommendations may be found in the Executive Summary. It has
been a delight to ierve with such an expert and diligent group
of people on this Task Force. We would all like to express our
gratitude to the many people who briefed us, and from those
supporting this effort, especially Lieutenant Colonel Susan
Swift, USAF.

I regret that my personal ciffioulties have so long delayed
the report's Oinal submission. As a result of these delays, our
technical assessment of STARS is dated, although I have been
recently briefed on its progress. The program has acquired
considerable focus under Colonel Green, and is moving forward.
Our recommendation for its organizational transfer remains
unchanged, however, by these developments.

Some of our recommendations have been implemented already.
The others remain current and valid.

Frederick P. Brooks, Jr.
Chairman
Defense Science Board
Task Force on Military Software

Attachment

iii

Table of Contents

1. Executive Summary 1

STLARS 1.

A da . 1

Acquisition 2

Personnel 3

2. Introduction 5

2.1 The Charge to the Tuk Force 5
2.2 Military Software 6

2.3 Why Is Software Technology Developing So Slowly? 8

2.4 Current Software Trends 9

2.5 Current DoD Programs on Software Technology 11

2.6 Recent Previous Studies 12

3. STARS - 2!oftware Technology for Adaptable, Reliable Systems 13

4. ADA 16

5. Strategic Defense: Initiative Software 23

6. DoD and the Civilian Software Market 24

7. DoD in a Sellers' Market for Software 29

8. A New Life-Cycle.Model for Custom DoD Software 33

9. Module Reuse in DoD Custom Software 36

10. Software-Skilled People 38

11. Appendices 42

Al. The Task Force 42

A2. Terms of Reference 42

A3. Meetings and Briefings 42

A4. Documents Studied 42

AS. Software - Why Is It Hard? 42

A6. Proposal for a New "Rights in Software' Clause 42or

A7. Proposal for a Module Market 42
DTIC TAB
Unaimouneod 0
Justirfcation

, ' By ..

IDistribution/. . .
"Availability Codes

jAvail and/or

Dist Special

Report of the Task Force on Military Software
Defense Science Board

1. Executive Summary

Many previous studies have provided an abundance of valid conclusions and detailed
recommendations. Most remain unimplemented. If the military software problem is real,
it is not perceived as urgent. We do not attempt to prove that it is; we do recommend
how to attack it if one wants to.

We C'.o not see any single technological development in the next decade that promises
ten-fold improvement in software productivity, reliability, and timeliness. There are several
technical developments under way which together can be expected to yield one order of
magnitude, but not two. Few fields have so large a gap between best current practice and
aver&ge current practice; we concur with the priorities that DoD has given tc upgrading
average practice by more vigorous technology transfer.

Current DoD initiatives in software technology and methodology include the Ada effort,
the STARS program, DARPA's Strategic Computing Initiative, the Software Engineering
Institute, and a planned program in the Strategic Defense Initiative. These five initiatives
are uncoordinated. We recommend that the Undersecretary of Defense (Acquisition)
establish a formal program coordination mechanism for them, (4uc.-# -

The big problems are not technical. In spite of the substantial technical develop-
ment needed in requirements-setting, metrics and measures, tools, etc., the Task Force
is convinced that today's major problems with military software development are not
technical problems, but management problems. Hence we call for no new initiatives in the
development of the technology, some modest shift of focus in the technology efforts under
way, but major re-examination and change of attitudes, policies, and practices concerning
software acquisition.

STARS

The DoD program for Software Technology for Adaptable, Reliable Systems, STARS,
has made little progress in recent years and has had vague and ill-focused plans for the
future. Service support and enthusiasm is lacking. Yet it is very important that such a
project-independent methodology development effort proceed. We recommend that the
STARS Joint Program Office be moved from the Office of the Secretary of Defense to the
USAF Electronic Systems Division. (Rec. #1) We recommend that a, general officer be
given responsibility for STARS, the Ada Joint Program Office, and Software Engineering
Tnstitute (whose contracting office is already in ESD). Deputies from the other Services
should be appointed.

WV.'

@1

Ada

It is very important for DoD to have a standard programming language; Ada is
by far the strongest candidate in sight. The 1983 mandate for Ada was technically
premature. DoD commitment to Ada since that time has been weak. The state of Ada
compiling technology is now such that it is time to commit vigorously and wholeheartedly.
The directives 3405.1 and 3405.2 are right first steps - management follow-through on
enforcement and support is now essential.

Ada embodies and facilitates a set of new approaches to building software, generally
known as "modern software practices." We expect these practices, rather than yet another
p-.ogramming language, to make a real difference in software robustness, reusability,
adaptability, and maintenance. Ada is not the only conceivtble vehicle for such practices,
but if is here, it has been tailored for the embedded software problem, and multiple
compilers have- been validated. We recommend against further waiting, language tuning,
or subsetting.

Achieving the benefits of modern programming practices requires the development of
unified programming environments. This work must continue to be pushed forward.

Few program managers will want to take on the headaches of being first user of a new
tool, yet it is essential that all major new programs be committed to that tool if it is to
be effective. Only top-level DoD commitment and mandate can make that happen.

We commend AJPO for its technical success in establishing the language definition and
language validation procedures. We recommend that it be moved from OSD to a unified
software joint program office in the USAF Electronic Systems Command (Recs. #6,7).

i

Acquisition

Mileu. The civilian software market has exploded in the past decade, so that the total
civilian market for purchased software, not counting in-house-built application software, is
now more than ten times larger than the DoD market. This requires a radical update in
much DoD thinking. Some implications:

1. DoD can nf longer create de facto standards and enforce them on the civilian market,
as it was able to do with COBOL.

2. DoD must not diverge too far from whatever the civilian market is doing in program-
ming methodology, else it will have to support its own methodology by itself, with little
resource or training commitment from others. (The same thing is true of processor
architectures.)

3. DoD should be aggressively looking for opportunities to buy, in the civilian market,
tools, methods, environments, and application software. Whenever it can use these

2

Ada

It is very important for DoD to have a standard programming language; Ada is
Sby far the strongest candidate in sight. The 1983 mandate for Ada was technically

premature. DoD commitment to Ada since that time has been weak. The state of Ada
compiling technology is now such that it is time to commit vigorously and wholeheartedly.
The directives 3405.1 and 3405.2 are right first steps - management follow-through on
enforcement and support is now essential.

Ada embodies and facilitates a set of new approaches to building software, generally
known as "modem software practices." We expect these practices, rather than yet another
p- .igramming language, to make a real difference in software robustness, reusability,
adaptability, and maintenance. Ada is not the only conceivable vehicle for such practices,
but if is here, it has been tailored for the embedded software problem, and multiple
compilers have ýeialidated. We recommend against further waiting, language tuning,
or subsetting.

Achieving the benefits of modern programming practices requires the development of
unified programming environments. This work must continue to be pushed forward.

Few program managers will want to take on the headaches of being first user of a new
tool, yet it is essential that all major new programs be committed to that tool if it is to
be effective. Only top-level DoD commitment and mandate can make that happen.

i lWe commend AJPO for its technical success in establishing the language definition and
language validation procedures. We recommend that it be moved from OSD to a unified
software joint program office in the USAF Electronic Systems Command (Recs. #6,7).

Acquisition

Mileu. The civilian software market has exploded in the past decade, so that the total
civilian market for purchased software, not counting in-house-built application software, is
now more than ten times larger than the DoD market. This requires a radical update in
much DoD thinking. Some implications:

1. DoD can nf longer create de facto standards and enforce them on the civilian market,
as it was able to do with COBOL.

2. DoD must not diverge too far from whatever the civilian market is doing in program-
ming methodology, else it will have to support its own methodology by itself, with little
resource or training commitment from others. (The same thing is true of processor
architectures.)

3. DoD should be aggressively looking for opportunities to buy, in the civilian market,
tools, methods, environments, and application software. Whenever it can use these

2

instead of custom-built software, it gets big gains in ,timeliness, cost, reliability,
completeness of documentation, and training. But today's acquisition regulations
and procedures are all heavily biased in favor of developing custom-built software
for individual programs.

Life-cycle model. DoD Directive 5000.29 and STD 2167 codify the best 1975 thinking
about software, including a so-called "waterfall" model calling for formal specification, then
request for bids, then contracting, delivery, installation, and maintenance. In the decade
since the waterfall model was developed, our discipline has come to recognize that setting
the requirements is the most difficult and crucial part of the software building process, and
bne that requires iteration between the designers and users. In best modern practice, the
ea-.y specification is embodied in a prototype, which the intended users can themselves
drive in order to see the consequences of their imaginings. Then, as the design effort
begins to yield data on the cost and schedule consequences of particular specifications, the
designers and the nsers revise the specifications.

Directive 5000.29 not only does not encourage this best znodern practice, it essentially
forbids it. We recommend that it be revised immediately to\mandate and facilitate early
prototyping before the baseline specifications are established '(Rec. #23).

DoD-STD-2167 likewise needs a radical overhaul to reflect best modern practice. Draft
DoD-STD-2167A is a step, but it does not go nearly far enough. As drafted, it continues to
reinforce exactly the document-driven, specify-then-build approach that lies at the heart
of so many DoD software problems.

For major new software builds, we recommend that competitive level-of-effort contracts
be routinely let for determining specificatlons and preparing an early prototype (Rec. #26).
The work of specification is so crucial, and yet its fraction of total cost is so small, that
we believe duplication in this phase will save money in total program cost, and surely save
time. After a converged-specification has been prepared and validated by prototyping, a
single competitively-bid contract for construction is appropriate.

Incentives. Defense procurement procedures diskourage contractor investment in the
development of new software methodology. Any such contractor investment made today
promises low return. We recommend that the DoD rights-in-data policy be revised to
distinguish software rights from other rights, and that the policy as it applies to software
be designed to encourage contractor investment, both with private and IRD funds, in tools,
methods, and programming environments (Recs. #17-22).

Similarly, today's policies actively discourage the reuse of software modules from
one system in another. We recommend a variety of policy changes, each designed to
encourage reuse, and indeed, the establishment of a public market in reusable software
parts (Recs. #29-33).

3

... • .. •:•--..

•j • • • -•:= .• -*w .- .r'rrwvwvwrr -= • k . • = , - rfl iF r r' -I -

Personnel

"It appears that the n-,on-ber of software-qualified military officers has been essentially
constant over th.. past decade, despite exponential growth in software. Many studies have
recommended actions that need to be taken re training, specialty codes, career paths,
etc., to addreus the shortage of uniformed specialists. Some of these have been taken.
Nevertheless, the number has not increased.

We doubt that it will. The powerful civilian demand for such persoas will, we expect,
co'ntinue to drain thpm away from the Services as fast as they reach first retairement age,

jefore.

Therefore we recommend that the Services now assume that there will not be more
such people, and concentrate effort on how best to use those they have (Rec. #34). The
application-knowledgeable, technically skilled leaders are the military's limiting resource
in using today's computer technology.

We observe that in the best military software programs, the number of customer
software people engaged in the acquisition and program oversight approximates 10% of the

A.: number of contractor personnel. This number does not seem too high. Few program offices
"are staffed so well, however, largely due to the shortage of qualified people. Meanwhile
one observes some substantial software-building efforts under way within the Services,
usually done by a combination of civi!ian and uniformed personnel, generally managed by
software-qualified officers. This is a second-best use of the available specialist officers.

We recommend phasing out this practice and concentrating the available knowledgeable
officers on acquisition (Rec. #35). We see no other way that the exponential growth in
needed military software can be met.

14

Z zI

V•.

".%* -S

3
k • .

2. Introduction

2.1 The Charge to the Task Force

Abbreviated Terms of Reference, (Appendix A2 contains the faill text).

A. Assess and unify various recent studies.

B. Examine why software costs are high.

C. Assess STARS for military software; discuss the priority of its components.

D. Recommend how to enlist industry, Service, and university efforts in a productivity
thrust.

E. Assess STARS, etc., for U.S. international competitiveness.

F. Recommend how to apply R&D funds to get the most increase in military software
capability.

G. Recommend how to implement an incremental and evolutionary approach to (F).

H. Assess the wisdom of the Ad& plan, especially in view of "Fourth-Generation' lan-
guages.

What the Task Force Did Not Address

Problem Seriousness Sizing. It would be presumptuous, and appear to be self-serving
as well, for this Task Force to tell the Service commanders and the DoD civilian authorities
that your mission-critical software problem ranks high on your present or future critical-
problem list. Other studies have sized the cost and recounted software-caused delays and
system malfunctions. Your own experience will have to put this problem into proper
perspective among all your difficulties.

What the Task Force is qualified to do for you is to

e characterize software, its problems, and its technologyV £ identify trends that will, in the course of time, make today's problems worse or
better,

* suggest actions to address today's problems and avert tomorrow's calamities.

Non-Mission-Critical Software. The Task Force largely limited itself to mission-
critical systems, those wherein military software most differs from civilian-market software.
Our recommendations wi'.h respect to procurement, however, apply to all DoD acquisition
of software, In Section 6 we categorize DoD software according to the degree to which it

nrug r w I r . . - . . -- -----

must be non-standard because of its military function.

Service-Specific Personrel Problems. We did not address Service-specific personnel
and skills problems. Thesm have been adequately addrdissed in earlier studies. The career-
path and skills-retention problems continue to be very real in all the Services.

SE1. We did not review the Software Engineering Institute, other than to hear a briefing
on its objectives. It, was in the process of being established and finding a permanent
director during our study; any review would have been premature.

SDI. The same was true of the SDI plan for developing software methodology. At the
tit~ie we were briefed by the SDI office, there was no plan to review.

SCI. We hadi only one briefing on the DARPA soft-ware methodology efforts encompassed
within the 'Strategic Computing Initiative. These efforts are properly aimed at producing
results a decade hence. The approaches are sufficiently bold that little in the way of
directly ?.pplic able short- and mid-term results can be expected.

New 10echnological Initiatives. We do not recommend any new initiatives or funding
for n'ýw specific research or technology-development programs. We support the recent
technological initiatives, but today's major unaddressed problems are not technical, but
managerial.

2.2 Military Software

Role. Software plays a major role in today's weapon systems. The "smarts" of smart
weapons are provided by software. Software is crucial to intelligence, communications,
command, and control. Software enables computerized systemns for logistics, personnel,
and finance. The chief "military software problem7 is that we cannot get enough of it,
soon enough, reliable enough, and cheap enough to meet the demands of weapon systems

desgnrsand users. Software provides a major Lomponent of U.S. war-fighting capability.

Growth. DoD software-intensive systems have grown exponentially, reaching an annual
software expenditure level in mission-critical computer systems of about $9 billion in 1985,
with projections of $30 billion annually by 1990 [Taft, 1985). This continuing growth
has strained the ability of the DoD to manage their development. Because software

controls system function, deficiencies in software development affect over-all weapon system
performance and cost quite out of proportion to the software cost itself.

Like Civilian Software. Military software is fundamentally like advanced civilian
software, only more so. That is, the properties of real-time operational software in civili&,n
banking, airline reservations, or process control, are the same as those of weapon-csystem
software. Big civilian database and file systems look essentially like the military logistics,

6

6%

finance, and persoDnel software. In the operation of a ship or a base, one finds many small
computers whose tasks are essentially the x.n-e as those in civilian businesses.

Only More So. Mission-critical military software is more universally real-time,
communications-oriented, and resource-constrained thaw its civilian counterparts. At any
given time, the demands of weapon systems stress the state of the software art more
severely than do rivilian demands.

Timeliness and Reliability. Although the cost of military software is commonly seen
as the major problem, and is emphasized in our Terms of Reference, both previous studies
and our briefers suggest that software timeliness and reliability are even more critical
problems today.

Software development cycles are long, relatively unpredictable, and come at the end of
total weapon system development. Thus they frequently encounter delays, delays usually
on the critical path to operational capability. It also takes too long to adapt running
software to changing hardware or operational requirements.

Software reliability is equally of concern. Since operational software i. complex, it
usually contains design flaws, and these are hard to find and often painful in effect.

Requirements-Setting Is The Hardest Part. As is true for complex hardware
systems, the hardest part of the software task is the setting of the exact requirements,
including numbers for size and performance, and including the relative priorities of different
requirements in the designers' inevitable trade-offs.

We have no technology and only poor methodologies for establishing such requirements.
There are not even good ways in common use for even stating detailed requirements and
trade-off priorities. Misjudgements in requirements badly hurt effectiveness, cost, and
schedule. Such misjudgements abound. Most common is the specification of over-rich
function, whose bad effects on size and performance become wvident only late in the design
cycle. Another common error is the mis-imagination of how user interfaces should work.

In our view the difficulty is fundamental. We believe that users cannot, with any
amount of effort and wisdom, accurately describe the operational requirements for a sub-
stantial software system without testing by real operato;s in an o~perational environment,
and iteration on the specification. The systems built today a&e just too complex for
the mind of man to foresee all the ramifications purely by the exercise of the analytic
imagination.

This inherent difficuiL is unnecessarily compounded in DoD by the presence of too
many intermediaries be" veen the ultimate user and the software specifier.

The Big Problems Are Not Technical. In spite of the substantial technical devel-
opment needed in requirements-setting, metrics and measures, tools, etc., the Task Force
is convinced that today's major problems with military software development are not
technical problems, but management problems. Hence we call for no new initiatives in the

7

development of the technology, some modest shift of focus in the technology efforts under
way, but major re-examination and change of attitudes, policies, and practices concerning
softwa~re acquisition.

2.3 Why Is Software Technology Developing So Sflowly?

Participants and observers in the computer game often marvel that the software te~zh-
* ~no4ogy develops so slowly, especially in comparison with. computer hardware technology.

In our Terms of R~eference we are charged with examining the underlying nature of the
software process so as to explain high costs and slow development.

Hardware Technology Is So Fast.

The remarkable fact is not Ahe slow rate of development of computer software tech-
nology, but the fast rate of hardware technology, a fact especially striking to those of us
who do both. Today's hardware offers at least a 10,000-fold gain in price-performance over
that of 30 years ago, and one can choose at least 1000-fold of that gain in either price
or performance! No other technology has come even close to that rate of development.
It reflects the shift of computer hardware from ar, asmembly technology to a process
technology.

Software Is Labor-Intensive.

Software development is and always will be a labor-intensive technology. The work
and the time is all in development, not production. Development ib always labor-intensive.
Moreover, in the ultimate, one is developing conceptual structures, and although our
machines can do the dog-work and can help us keep track of our edifices, concept
development is the quintessentially human activity.

The Essence Is Designing Intricate Conceptual Structures Rigorously.

In Appendix AS, we analyze the software task. We argue that its essence is the
designing of intricate conceptual structures, rigorously and correctly. The part of software
development that will not go away is the craftiUng of these conceptual structures; the part
that can go away is the labor of expressing them. The task is made more difficult by three
other properties of software products: (1) the necessity for them to conform to complex
environmental, hardware, and user interfaces; (2) the necessity for them to change as their
interfaces change; (3) and the invisibility of the structures themselves.

We believe a significant fraction of software development effort today is expended on
this essential 1Nbor, rather than on the task of expressing the designs.

The Removal of]Expression Difficulties Has Brought Much of the Past Gain.

The essential labor itself has not always taken most of the effort. Much of the work was
formerly spent on non-essential, incidental difficulties in the expression of the conceptual
structures. The three big breakthroughs in software methodology each have consisted of
removing one of these incidental difficulties.

First was the avwkwardneis of machine language. High-level languages removed this
difficulty and improved productivi•yv ten-fold.

Second was the loss of mental continuity occasioned by slow turn-around batch
compilation and execution. Time-sharing removed this difficulty, improving productivity
2-5 times.

Third was the utter incompatibility of files, formats, and interfaces among various
software tools. Integrated programming environments such as Unix and Interlisp overcame
this difficulty, again doubling (or better) productivity.

What's In the Cards?

There are stll non-essential expression difficulties, but they do not account for most
of the development effort in modern software shops. Future methodological imprcvements
will have to attack the essence - conceptual design itself.

Examination of the most promising technological developments shows no single tech-
nique that can be expected to yield as much as a 10-fold improvement in productivity,
timeliness, and robustness in the next ten years.

On the other hand, all of the various technological developments on the horizon
together should easily yield a 10-fold improvement in the next decade. It is not likely
that all those developments together will yield a 100-fold improvement.

2.4 Current Software Trends

Mi Five developments in the past decade have revolutionized the software scene. DoD
software practices evolved in the '63's and '70's, and they neither take into account nor
utilize these advances.

The Microcomputer Revolution and the Personal Computer

The microcomputer, both as a component, and by its incorporation into personal
computers, has totally changed the computer field and the software field. Every procedure
for computer acquisition, etc., must now define a floor in machine size below which it is not

9

applicable, and machines below the flior should be treated as commodities, components,
and spare parts. (Not all procedures have yet been so revised.)

Obviously software standards such as the Ad& mandate must have such a floor as well.
The constraints on embedded microprocessors are su..h that their software often must be
in machine language. We do not address microprocessor software.

We likewise do not deal with the software problems of personal computers. DoD,
like every large enterprise, needs some standards as to h~w such machines are to be
supplied, how they will be equipped with standard-function programs, and how they are to
ir.'Prchange information. Such standardization should be minimal and light-handed. We

Qld not recommend that the Ada mandate cover personal computers.

America's greatest comparative military advantage is the individual initiative and
ingenuity of our Service people. We are therefore greatly encouraged to see the Services
making personal computers readily available to individual units so that individuals can
solve their own simple computing problems their own way. A personal computer and an
electronic spread sheet make a powerful combination, sufficient for countless tasks.*

A Mass Market for Software

The personal computer revolution has explosively fueled the development of a mass
market for third-party developed software. This is the most important development in the
software field in our time.

Each of several computer architectures (the properties of a computer that determine
what programs it will run) define a market. The biggest are those for IBM PC-compatibles,
Apple-compatibles, Macintosh, DEC VAX-compatibles, Unix-compatibles, and IBM 370-
compatibles. For each of these markets literally hundreds of packages are available, covering
an immense spectrum of functions and costing from a few dollars to a few hundred
thousand. The markets are fiercely competitive.

Technology for Software Modularization and Reuse

Techniques for designing software in little modules, for defining the module interfaces
p-ecisely, and for using common file formats have come into standard use during the
decade. These methods, the backbone of so-called "modern programming practices",
radically improve the structure and adaptability of large programs. They a~so define
modules, whose reuse often costs one-tenth as much as writing another module to do the
same function. Reuse is also much quicker, and it yields better tested, more reliable code.

taDrs. Jones and Brooks had the opportunity to observe a Blue-Flag simulated Air
Force-Army-Marine tactical exercise. We saw a number and variety of personal computers
that have been integrated effectively into unit operational functions; we were pleased to
see a light dependence on massive computer systems.

10

The Ada programming language is designed to make such modularization natural,
and to provide very powerful facilities- for linking modules. Integrat.-d programming
environments, such as Unix, provide the same kind of facility at another level, that of
the shell-script linking whole programs together.

Rapid Prototyping and Iterative Development

As people have recognized that the requirements, and especially the user interface,
require iterative development, %%-.th interspersed testing by users, there has developed a
technology for constructing "rapid" prototypes. Such a prototype typically executes the
mo in-line function of its type, but not the countless exceptions that make programming
costly. It usually does not have complete error-handling, restart, or help facilities. The
prototype is often built using a lash-up of handy components that swap performance for
rapid interconnect ability. It is usually run on a computer that is bigger and faster than
the target machine.

Commercial packages enable one to prototype graphics interfaces, for example, so that
user testing can be done quite early in the development.

Professional Humility and Evolutionary Development

Experience with confidently specifying and painfully building mammoths has shown it
to be simplest, safest, and even fastest to develop a complex software system by building
a mninimaal version, putting it into actual use, and then adding function, enhancing speed,
reducing size, etL., according to the priorities that emerge from the actual use. Software
engineers must recognize that we cannot specify mam~moths right the first time. In practice,
Version 2 is usually under development before Version 1 is delivered, so Version 3 may be
the first to be affected by actual experience.

This procedure speeds ffirst delivery. It also provides for the iterative setting of
requirements. It minimizes '%-he specification of heavy function whose performance penalties
have not yet been weighed. It tends to concentrate development effort where it will make
the most difference. Seeing the minimal version run does wonders for the morale of the
development team and substantially boosts their communication as to further development.

Evolutionary development is best technically, and it saves time and money. It plays

E havoc with the customary forms of competitive procurement, however, and they with it.

0 Creativity in acquisition is now needed.

2.5 Current DoD Programs on Software Technology

Besides some substantial efforts in individual Service laboratories, DoD has under way
five programs aimed at enhancing software methodology:

